Friday, 30 December 2016

Data Mining - Retrieving Information From Data

Data Mining - Retrieving Information From Data

Data mining definition is the process of retrieving information from data. It has become very important now days because data that is processed is usually kept for future reference and mainly for security purposes in a company. Data transforms is processed into information and it is mostly used in different ways depending on what information one is extracting and from where the person is extracting the information.

It is commonly used in marketing, scientific information and research work, fraud detection and surveillance and many more and most of this work is done using a computer. This definition can come in different terms data snooping, data fishing and data dredging all this refer to data mining but it depends in which department one is. One must know data mining definition so that he can be in a position to make data.

The method of data mining has been there for so many centuries and it is used up to date. There were early methods which were used to identify data mining there are mainly two: regression analysis and bayes theorem. These methods are never used now days because a lot of people have advanced and technology has really changed the entire system.

With the coming up or with the introduction of computers and technology, it becomes very fast and easy to save information. Computers have made work easier and one can be able to expand more knowledge about data crawling and learn on how data is stored and processed through computer science.

Computer science is a course that sharpens one skill and expands more about data crawling and the definition of what data mining means. By studying computer science one can be in a position to know: clustering, support vector machines and decision trees there are some of the units that are found on computer science.

It's all about all this and this knowledge must be applied here. Government institutions, small scale business and supermarkets use data.

The main reason most companies use data mining is because data assist in the collection of information and observations that a company goes through in their daily activity. Such information is very vital in any companies profile and needs to be checked and updated for future reference just in case something happens.

Businesses which use data crawling focus mainly on return of investments, and they are able to know whether they are making a profit or a loss within a very short period. If the company or the business is making a profit they can be in a position to give customers an offer on the product in which they are selling so that the business can be a position to make more profit in an organization, this is very vital in human resource departments it helps in identifying the character traits of a person in terms of job performance.

Most people who use this method believe that is ethically neutral. The way it is being used nowadays raises a lot of questions about security and privacy of its members. Data mining needs good data preparation which can be in a position to uncover different types of information especially those that require privacy.

A very common way in this occurs is through data aggregation.

Data aggregation is when information is retrieved from different sources and is usually put together so that one can be in a position to be analyze one by one and this helps information to be very secure. So if one is collecting data it is vital for one to know the following:

    How will one use the data that he is collecting?
    Who will mine the data and use the data.
    Is the data very secure when am out can someone come and access it.
    How can one update the data when information is needed
    If the computer crashes do I have any backup somewhere.

It is important for one to be very careful with documents which deal with company's personal information so that information cannot easily be manipulated.

source : http://ezinearticles.com/?Data-Mining---Retrieving-Information-From-Data&id=5054887

Monday, 26 December 2016

One of the Main Differences Between Statistical Analysis and Data Mining

One of the Main Differences Between Statistical Analysis and Data Mining

Two methods of analyzing data that are common in both academic and commercial fields are statistical analysis and data mining. While statistical analysis has a long scientific history, data mining is a more recent method of data analysis that has arisen from Computer Science. In this article I want to give an introduction to these methods and outline what I believe is one of the main differences between the two fields of analysis.

Statistical analysis commonly involves an analyst formulating a hypothesis and then testing the validity of this hypothesis by running statistical tests on data that may have been collected for the purpose. For example, if an analyst was studying the relationship between income level and the ability to get a loan, the analyst may hypothesis that there will be a correlation between income level and the amount of credit someone may qualify for.

The analyst could then test this hypothesis with the use of a data set that contains a number of people along with their income levels and the credit available to them. A test could be run that indicates for example that there may be a high degree of confidence that there is indeed a correlation between income and available credit. The main point here is that the analyst has formulated a hypothesis and then used a statistical test along with a data set to provide evidence in support or against that hypothesis.

Data mining is another area of data analysis that has arisen more recently from computer science that has a number of differences to traditional statistical analysis. Firstly, many data mining techniques are designed to be applied to very large data sets, while statistical analysis techniques are often designed to form evidence in support or against a hypothesis from a more limited set of data.

Probably the mist significant difference here, however, is that data mining techniques are not used so much to form confidence in a hypothesis, but rather extract unknown relationships may be present in the data set. This is probably best illustrated with an example. Rather than in the above case where a statistician may form a hypothesis between income levels and an applicants ability to get a loan, in data mining, there is not typically an initial hypothesis. A data mining analyst may have a large data set on loans that have been given to people along with demographic information of these people such as their income level, their age, any existing debts they have and if they have ever defaulted on a loan before.

A data mining technique may then search through this large data set and extract a previously unknown relationship between income levels, peoples existing debt and their ability to get a loan.

While there are quite a few differences between statistical analysis and data mining, I believe this difference is at the heart of the issue. A lot of statistical analysis is about analyzing data to either form confidence for or against a stated hypothesis while data mining is often more about applying an algorithm to a data set to extract previously unforeseen relationships.

Source:http://ezinearticles.com/?One-of-the-Main-Differences-Between-Statistical-Analysis-and-Data-Mining&id=4578250

Thursday, 15 December 2016

Web Data Extraction Services

Web Data Extraction Services

Web Data Extraction from Dynamic Pages includes some of the services that may be acquired through outsourcing. It is possible to siphon information from proven websites through the use of Data Scrapping software. The information is applicable in many areas in business. It is possible to get such solutions as data collection, screen scrapping, email extractor and Web Data Mining services among others from companies providing websites such as Scrappingexpert.com.

Data mining is common as far as outsourcing business is concerned. Many companies are outsource data mining services and companies dealing with these services can earn a lot of money, especially in the growing business regarding outsourcing and general internet business. With web data extraction, you will pull data in a structured organized format. The source of the information will even be from an unstructured or semi-structured source.

In addition, it is possible to pull data which has originally been presented in a variety of formats including PDF, HTML, and test among others. The web data extraction service therefore, provides a diversity regarding the source of information. Large scale organizations have used data extraction services where they get large amounts of data on a daily basis. It is possible for you to get high accuracy of information in an efficient manner and it is also affordable.

Web data extraction services are important when it comes to collection of data and web-based information on the internet. Data collection services are very important as far as consumer research is concerned. Research is turning out to be a very vital thing among companies today. There is need for companies to adopt various strategies that will lead to fast means of data extraction, efficient extraction of data, as well as use of organized formats and flexibility.

In addition, people will prefer software that provides flexibility as far as application is concerned. In addition, there is software that can be customized according to the needs of customers, and these will play an important role in fulfilling diverse customer needs. Companies selling the particular software therefore, need to provide such features that provide excellent customer experience.

It is possible for companies to extract emails and other communications from certain sources as far as they are valid email messages. This will be done without incurring any duplicates. You will extract emails and messages from a variety of formats for the web pages, including HTML files, text files and other formats. It is possible to carry these services in a fast reliable and in an optimal output and hence, the software providing such capability is in high demand. It can help businesses and companies quickly search contacts for the people to be sent email messages.

It is also possible to use software to sort large amount of data and extract information, in an activity termed as data mining. This way, the company will realize reduced costs and saving of time and increasing return on investment. In this practice, the company will carry out Meta data extraction, scanning data, and others as well.

Source: http://ezinearticles.com/?Web-Data-Extraction-Services&id=4733722

Friday, 9 December 2016

Data Mining vs Screen-Scraping

Data Mining vs Screen-Scraping

Data mining isn't screen-scraping. I know that some people in the room may disagree with that statement, but they're actually two almost completely different concepts.

In a nutshell, you might state it this way: screen-scraping allows you to get information, where data mining allows you to analyze information. That's a pretty big simplification, so I'll elaborate a bit.

The term "screen-scraping" comes from the old mainframe terminal days where people worked on computers with green and black screens containing only text. Screen-scraping was used to extract characters from the screens so that they could be analyzed. Fast-forwarding to the web world of today, screen-scraping now most commonly refers to extracting information from web sites. That is, computer programs can "crawl" or "spider" through web sites, pulling out data. People often do this to build things like comparison shopping engines, archive web pages, or simply download text to a spreadsheet so that it can be filtered and analyzed.

Data mining, on the other hand, is defined by Wikipedia as the "practice of automatically searching large stores of data for patterns." In other words, you already have the data, and you're now analyzing it to learn useful things about it. Data mining often involves lots of complex algorithms based on statistical methods. It has nothing to do with how you got the data in the first place. In data mining you only care about analyzing what's already there.

The difficulty is that people who don't know the term "screen-scraping" will try Googling for anything that resembles it. We include a number of these terms on our web site to help such folks; for example, we created pages entitled Text Data Mining, Automated Data Collection, Web Site Data Extraction, and even Web Site Ripper (I suppose "scraping" is sort of like "ripping"). So it presents a bit of a problem-we don't necessarily want to perpetuate a misconception (i.e., screen-scraping = data mining), but we also have to use terminology that people will actually use.

Source: http://ezinearticles.com/?Data-Mining-vs-Screen-Scraping&id=146813

Tuesday, 6 December 2016

Data Discovery vs. Data Extraction

Data Discovery vs. Data Extraction

Looking at screen-scraping at a simplified level, there are two primary stages involved: data discovery and data extraction. Data discovery deals with navigating a web site to arrive at the pages containing the data you want, and data extraction deals with actually pulling that data off of those pages. Generally when people think of screen-scraping they focus on the data extraction portion of the process, but my experience has been that data discovery is often the more difficult of the two.

The data discovery step in screen-scraping might be as simple as requesting a single URL. For example, you might just need to go to the home page of a site and extract out the latest news headlines. On the other side of the spectrum, data discovery may involve logging in to a web site, traversing a series of pages in order to get needed cookies, submitting a POST request on a search form, traversing through search results pages, and finally following all of the "details" links within the search results pages to get to the data you're actually after. In cases of the former a simple Perl script would often work just fine. For anything much more complex than that, though, a commercial screen-scraping tool can be an incredible time-saver. Especially for sites that require logging in, writing code to handle screen-scraping can be a nightmare when it comes to dealing with cookies and such.

In the data extraction phase you've already arrived at the page containing the data you're interested in, and you now need to pull it out of the HTML. Traditionally this has typically involved creating a series of regular expressions that match the pieces of the page you want (e.g., URL's and link titles). Regular expressions can be a bit complex to deal with, so most screen-scraping applications will hide these details from you, even though they may use regular expressions behind the scenes.

As an addendum, I should probably mention a third phase that is often ignored, and that is, what do you do with the data once you've extracted it? Common examples include writing the data to a CSV or XML file, or saving it to a database. In the case of a live web site you might even scrape the information and display it in the user's web browser in real-time. When shopping around for a screen-scraping tool you should make sure that it gives you the flexibility you need to work with the data once it's been extracted.

Source: http://ezinearticles.com/?Data-Discovery-vs.-Data-Extraction&id=165396