Thursday, 28 September 2017

Web Data Extraction Services and Data Collection Form Website Pages

For any business market research and surveys plays crucial role in strategic decision making. Web scrapping and data extraction techniques help you find relevant information and data for your business or personal use. Most of the time professionals manually copy-paste data from web pages or download a whole website resulting in waste of time and efforts.

Instead, consider using web scraping techniques that crawls through thousands of website pages to extract specific information and simultaneously save this information into a database, CSV file, XML file or any other custom format for future reference.

Examples of web data extraction process include:

• Spider a government portal, extracting names of citizens for a survey
• Crawl competitor websites for product pricing and feature data
• Use web scraping to download images from a stock photography site for website design

Automated Data Collection

Web scraping also allows you to monitor website data changes over stipulated period and collect these data on a scheduled basis automatically. Automated data collection helps you discover market trends, determine user behavior and predict how data will change in near future.

Examples of automated data collection include:

• Monitor price information for select stocks on hourly basis
• Collect mortgage rates from various financial firms on daily basis
• Check whether reports on constant basis as and when required

Using web data extraction services you can mine any data related to your business objective, download them into a spreadsheet so that they can be analyzed and compared with ease.

In this way you get accurate and quicker results saving hundreds of man-hours and money!

With web data extraction services you can easily fetch product pricing information, sales leads, mailing database, competitors data, profile data and many more on a consistent basis.

Article Source: http://EzineArticles.com/4860417

Tuesday, 26 September 2017

Various Methods of Data Collection

Professionals in all the business industries widely use research, whether it is education, medical, or manufacturing, etc. In order to perform a thorough research, you need to follow few suitable steps regarding data collection. Data collection services play an important role in performing research. Here data is gathered with appropriate medium.

Types of Data

Research could be divided in two basic techniques of collecting data, namely: Qualitative collection of data and quantitative collection. Qualitative data is descriptive in nature and it does not include statistics or numbers. Quantitative data is numerical and includes a lot of figures and numbers. They are classified depending on the methods of its collection and its characteristics.

Data collected primarily by the researcher without depending on pre-researched data is called primary data. Interviews as well as questionnaires are generally found primary data/information collection techniques. Data collected from other means, other than by the researcher is secondary data. Company surveys and government census are examples of secondary collection of information.

Let us understand in detail the methods of qualitative data collection techniques in research.

Internet Data: Here there is a huge collection of data where one gets a huge amount of information for research. Researchers remember that they depend on reliable sources on the web for precise information.

Books and Guides: This traditional technique is authentically used in today's research.

Observational data: Data is gathered using observational skills. Here the data is collected by visiting the place and noting down details of all that the researcher observes which is needed for essential for his research.

Personal Interviews: Increases authenticity of data as it helps to collect first hand information. It does not serve fruitful when a big number of people are to be interviewed.

Questionnaires: Serves best when questioning a particular class. A questionnaire is prepared by the researcher as per the need of data-collection and forwarded to responders.

Group Discussions: A technique of collecting data where the researcher notes down details of what people in a group has to think. He comes to a conclusion depending on the group discussion that involves debate on topics of research.

Use of experiments: To obtain the complete understanding researchers conduct real experiments in the field used mainly in manufacturing and science. It is used to obtain an in-depth understanding of the researching subject.

Data collection services use many techniques including the above mentioned for collection. These techniques are helpful to the researcher in drawing conceptual and statistical conclusions. In order to obtain precise data researchers combine two or more of the data collection techniques.

Source:http://ezinearticles.com/?Various-Methods-of-Data-Collection&id=5906957

Monday, 25 September 2017

How We Optimized Our Web Crawling Pipeline for Faster and Efficient Data Extraction

Big data is now an essential component of business intelligence, competitor monitoring and customer experience enhancement practices in most organizations. Internal data available in organizations is limited by its scope, which makes companies turn towards the web to meet their data requirements. The web being a vast ocean of data, the possibilities it opens to the business world are endless. However, extracting this data in a way that will make sense for business applications remains a challenging process.

The need for efficient web data extraction

Web crawling and data extraction is something that can be carried out through more than one route. In fact, there are so many different technologies, tools and methodologies you can use when it comes to web scraping. However, not all of these deliver the same results. While using browser automation tools to control a web browser is one of the easier ways of scraping, it’s significantly slower since rendering takes  a considerable amount of time.

There are DIY tools and libraries that can be readily incorporated into the web scraping pipeline. Apart from this, there is always the option of building most of it from scratch to ensure maximum efficiency and flexibility. Since this offers far more customization options which is vital for a dynamic process like web scraping, we have a custom built infrastructure to crawl and scrape the web.

How we cater to the rising and complex requirements

Every web scraping requirement that we receive each day is one of a kind. The websites that we scrape on a constant basis are different in terms of the backend technology, coding practices and navigation structure. Despite all the complexities involved, eliminating the pain points associated with web scraping and delivering ready-to-use data to the clients is our priority.

Some applications of web data demand the data to be scraped in low latency. This means, the data should be extracted as and when it’s updated in the target website with minimal delay. Price comparison, for example requires data in low latency. The optimal method of crawler setup is chosen depending on the application of the data. We ensure that the data delivered actually helps your application, in all of its entirety.

How we tuned our pipeline for highly efficient web scraping

We constantly tweak and tune our web scraping infrastructure to push the limits and improve its performance including the turnaround time and data quality. Here are some of the performance enhancing improvements that we recently made.

1. Optimized DB query for improved time complexity of the whole system

All the crawl stats metadata is stored in a database and together, this piles up to become a considerable amount of data to manage. Our crawlers have to make queries to this database to fetch the details that would direct them to the next scrape task to be done. This usually takes a few seconds as the meta data is fetched from the database. We recently optimized this database query which essentially reduced the fetch time to merely a fraction of seconds from about 4 seconds. This has made the crawling process significantly faster and smoother than before.

2. Purely distributed approach with servers running on various geographies

Instead of using a single server to scrape millions of records, we deploy the crawler across multiple servers located in different geographies. Since multiple machines are performing the extraction, the load on each server will be significantly lower which in turn helps speed up the extraction process. Another advantage is that certain sites that can only be accessed from a particular geography can be scraped while using the distributed approach. Since there is a significant boost in the speed while going with the distributed server approach, our clients can enjoy a faster turnaround time.

3. Bulk indexing for faster deduplication

Duplicate records is never a trait associated with a good data set. This is why we have a data processing system that identifies and eliminates duplicate records from the data before delivering it to the clients. A NoSQL database is dedicated to this deduplication task. We recently updated this system to perform bulk indexing of the records which will give a substantial boost to the data processing time which again ultimately reduces the overall time taken between crawling and data delivery.

Bottom line

As web data has become an inevitable resource for businesses operating across various industries, the demand for efficient and streamlined web scraping has gone up. We strive hard to make this possible by experimenting, fine tuning and learning from every project that we embark upon. This helps us maintain a consistent supply of clean, structured data that’s ready to use to our clients in record time.

Source:https://www.promptcloud.com/blog/how-we-optimized-web-scraping-setup-for-efficiency

Saturday, 22 July 2017

Things to Factor in while Choosing a Data Extraction Solution

Things to Factor in while Choosing a Data Extraction Solution

Customization options

You should consider how flexible the solution is when it comes to changing the data points or schema as and when required. This is to make sure that the solution you choose is future-proof in case your requirements vary depending on the focus of your business. If you go with a rigid solution, you might feel stuck when it doesn’t serve your purpose anymore. Choosing a data extraction solution that’s flexible enough should be given priority in this fast-changing market.

Cost

If you are on a tight budget, you might want to evaluate what option really does the trick for you at a reasonable cost. While some costlier solutions are definitely better in terms of service and flexibility, they might not be suitable for you from a cost perspective. While going with an in-house setup or a DIY tool might look less costly from a distance, these can incur unexpected costs associated with maintenance. Cost can be associated with IT overheads, infrastructure, paid software and subscription to the data provider. If you are going with an in-house solution, there can be additional costs associated with hiring and retaining a dedicated team.

Data delivery speed

Depending on the solution you choose, the speed of data delivery might vary hugely. If your business or industry demands faster access to data for the survival, you must choose a managed service that can meet your speed expectations. Price intelligence, for example is a use case where speed of delivery is of utmost importance.

Dedicated solution

Are you depending on a service provider whose sole focus is data extraction? There are companies that venture into anything and everything to try their luck. For example, if your data provider is also into web designing, you are better off staying away from them.

Reliability

When going with a data extraction solution to serve your business intelligence needs, it’s critical to evaluate the reliability of the solution you are going with. Since low quality data and lack of consistency can take a toll on your data project, it’s important to make sure you choose a reliable data extraction solution. It’s also good to evaluate if it can serve your long-term data requirements.

Scalability

If your data requirements are likely to increase over time, you should find a solution that’s made to handle large scale requirements. A DaaS provider is the best option when you want a solution that’s salable depending on your increasing data needs.

When evaluating options for data extraction, it’s best keep these points in mind and choose one that will cover your requirements end-to-end. Since web data is crucial to the success and growth of businesses in this era, compromising on the quality can be fatal to your organisation which again stresses on the importance of choosing carefully.

Source:https://www.promptcloud.com/blog/choosing-a-data-extraction-service-provider

Friday, 30 June 2017

The Ultimate Guide to Web Data Extraction

Web data is of great use to Ecommerce portals, media companies, research firms, data scientists, government and can even help the healthcare industry with ongoing research and making predictions on the spread of diseases.

Consider the data available on classifieds sites, real estate portals, social networks, retail sites, and online shopping websites etc. being easily available in a structured format, ready to be analyzed. Most of these sites don’t provide the functionality to save their data to a local or cloud storage. Some sites provide APIs, but they typically come with restrictions and aren’t reliable enough. Although it’s technically possible to copy and paste data from a website to your local storage, this is inconvenient and out of question when it comes to practical use cases for businesses.



Web scraping helps you do this in an automated fashion and does it far more efficiently and accurately. A web scraping setup interacts with websites in a way similar to a web browser, but instead of displaying it on a screen, it saves the data to a storage system.

Applications of web data extraction
1. Pricing intelligence

Pricing intelligence is an application that’s gaining popularity by each passing day given the tightening of competition in the online space. E-commerce portals are always watching out for their competitors using web crawling to have real time pricing data from them and to fine tune their own catalogs with competitive pricing. This is done by deploying web crawlers that are programmed to pull product details like product name, price, variant and so on. This data is plugged into an automated system that assigns ideal prices for every product after analyzing the competitors’ prices.

Pricing intelligence is also used in cases where there is a need for consistency in pricing across different versions of the same portal. The capability of web crawling techniques to extract prices in real time makes such applications a reality.

2. Cataloging

Ecommerce portals typically have a huge number of product listings. It’s not easy to update and maintain such a big catalog. This is why many companies depend on web date extractions services for gathering data required to update their catalogs. This helps them discover new categories they haven’t been aware of or update existing catalogs with new product descriptions, images or videos.

3. Market research

Market research is incomplete unless the amount of data at your disposal is huge. Given the limitations of traditional methods of data acquisition and considering the volume of relevant data available on the web, web data extraction is by far the easiest way to gather data required for market research. The shift of businesses from brick and mortar stores to online spaces has also made web data a better resource for market research.

4. Sentiment analysis

Sentiment analysis requires data extracted from websites where people share their reviews, opinions or complaints about services, products, movies, music or any other consumer focused offering. Extracting this user generated content would be the first step in any sentiment analysis project and web scraping serves the purpose efficiently.

5. Competitor analysis

The possibility of monitoring competition was never this accessible until web scraping technologies came along. By deploying web spiders, it’s now easy to closely monitor the activities of your competitors like the promotions they’re running, social media activity, marketing strategies, press releases, catalogs etc. in order to have the upper hand in competition. Near real time crawls take it a level further and provides businesses with real time competitor data.

6. Content aggregation

Media websites need instant access to breaking news and other trending information on the web on a continuous basis. Being quick at reporting news is a deal breaker for these companies. Web crawling makes it possible to monitor or extract data from popular news portals, forums or similar sites for trending topics or keywords that you want to monitor. Low latency web crawling is used for this use case as the update speed should be very high.

7. Brand monitoring

Every brand now understands the importance of customer focus for business growth. It would be in their best interests to have a clean reputation for their brand if they want to survive in this competitive market. Most companies are now using web crawling solutions to monitor popular forums, reviews on ecommerce sites and social media platforms for mentions of their brand and product names. This in turn can help them stay updated to the voice of the customer and fix issues that could ruin brand reputation at the earliest. There’s no doubt about a customer-focused business going up in the growth graph.

Source url :-https://www.promptcloud.com/blog/ultimate-web-data-extraction-guide

Thursday, 22 June 2017

A guide to data scraping

Data is all the rage these days.

It’s what businesses are utilizing to create an unfair advantage with their customers. The more data you acquire, the easier it becomes to slice it up in a unique way to solve problems for your customers.

But knowing that data can benefit you – and actually getting the data – are two separate items.
Much like technology, data can catapult you to greater heights, or it can bring you to your knees.
That’s why it is essential to pay careful attention and ensure the data you use propels you forward versus holding you back.

Why all data isn’t created equal

The right data can make you a hero. It can keep you at the forefront of your industry, allowing you to use the insights the information uncovers to make better decisions.

Symphony Analytics uses a myriad of patient data from a variety of sources to develop predictive models, enabling them to tailor medication schedules for different patient populations.

Conversely, the wrong data can sink you. It can cause you to take courses of action that just aren’t right. And, if you take enough wrong action based upon wrong data, your credibility and reputation could suffer a blow that’s difficult to recover from.

For instance, one report from the state of California auditor’s office shows that accounting records were off by more than $6 million due to flawed data.

That’s no good. And totally avoidable.

As a result, it is critical you invest the energy in advance to ensure the data you source will make you shine, rather than shrink.
How to get good data

You’ve got to plan for it. You’ve got to be clear about your business objectives, and then you’ve got to find a way to source the information in a consistent and reliable manner.

If your business’ area of expertise is data capture and analysis, then gathering the information you need on your own could be a viable option.

But, if the strength of you and your team isn’t in this specialized area, then it’s best to leave it to the professionals.

That’s why brands performing market research on a larger scale often hire market research firms to administer the surveys, moderate focus groups or conduct one-on-one interviews.

Of late, more companies are turning to data scraping as a means to capture the quantitative information they need to fuel their businesses. And they frequently turn to third-party companies to supply them with the information they need.

While doing so allows them to focus on their core businesses, relinquishing control of a critical asset for their businesses can be a little nerve-racking.

But, it doesn’t have to be. That is if you work with the right data scraping partner.

How to choose the right data scraping partner for you
In the project management world, there’s a triangle that is often used to help prioritize what is most important to you when completing a task.

Data Scraping Group: Good, Fast, Cheap - Pick any two

Although you may want all three choices, you can only pick two.

If you want something done fast, and of good quality, know that it won’t be cheap. If you want it fast and cheap, be aware that you will sacrifice quality. And if you’d like it to be cheap and good, prepare to wait a bit, because speed is a characteristic that will fall off the table.

There are many 3rd party professionals who can offer data scraping services for you. As you begin to evaluate them, it will be helpful to keep this triangle in mind.
Here are six considerations when exploring a partner to work with to ensure you get high-quality
web crawling and data extraction.

1. How does the data fit into your business model?

This one is counter intuitive, but it’s a biggie. And, it plays a major role as you evaluate all the other considerations.

If the data you are receiving is critical to your operations, then obtaining high-quality information exactly when you need it is non-negotiable. Going back to the triangle, “good” has to be one of your two priorities.

For instance, if you’re a daily deal site, and you rely on a third party to provide you all the data for the deals, then having screw-ups with your records just can’t happen.
That would be like a hospital not staffing doctors for the night. It just doesn’t work.
But, if the data you need isn’t mission critical for you to run your business, you may have a little more leeway in terms of how you weight the other factors that go into choosing who best to work with.

2. Cost

A common method numerous businesses use to evaluate costs is just to evaluate vendors based on the prices they quote.

And, too often, companies let the price ranges of the service providers dictate how much they are willing to pay.

A smarter option is to determine your budget in advance … before you even go out to explore who can get you the data you need. Specifically, you should decide how much you are able and willing to pay for the information you want. Those are two different issues.
Most businesses don’t enjoy unlimited budgets. And, even when the information being sourced is critical to operating the business, there is still a ceiling for what you’re able to pay.
This will help you start operating from a position of strength, rather than reacting to the quotes you may receive.

Another thing to consider are the various types of fees. Some companies charge a setup fee, followed by a subsequent monthly fee. Others charge fixed costs. If you’re looking at multiple quotes from vendors, this could make it difficult for you to compare.
A wise way to approach this is to make sure you are clear on what the total cost would be for the project, for whatever specified time period you’d like to contract with someone.
Here are a few questions to ask to make sure you get a full view of the costs and fees in the estimate:

-Is there a setup fee?
-What are the fixed costs associated with this project?
-What are the variable costs, and how are they calculated?
-Are there any other taxes, fees, or things that I could be charged for that are not listed on this quote?
-What are the payment terms?

3. Communication

Even when you’ve got a foolproof system that runs like a well-oiled machine, you still need to interact with your vendors on a regular basis. Ongoing communication confirms things are operating the way you’d like, gives you an opportunity to discuss possible changes and ensures your partner has a firm understanding of your business needs.

The data you are sourcing is important to you and your business. You need to partner with someone who will be receptive to answering questions and responding in a timely manner to inquiries you have.

4. Reputation

This was mentioned before, but it’s worth repeating. All data is not created equal. And, if you are utilizing data as a means to build and grow your business, you need to make sure it’s good.

So, even though data scraping isn’t your area of expertise, it will greatly benefit you to spend time validating the reputation the people vying to deliver it to you.

How do they bake quality in their work? Do they have any certifications or other forms of proof to give you further confidence in their capabilities? Have their previous customers been pleased with the quality of the data they’ve delivered?

You could do so by checking reviews of previous customers to see how pleased they were and why. This method is also helpful because it may assist you in identifying other important criteria that may not have been on your radar.

You could also compare the credentials of each of the vendors, and the teams who will actually be working on your project.

Another highly-effective way could be to simply spend time talking to your potential partners and have them explain to you their processes. While you may not understand all the lingo, you could ask them a few questions about how they engage in quality control and see how they respond.

You’d probably be shocked at the range of answers you get.

Here are a few questions to guide you as you start asking questions about their quality system:

- Are the data spiders customized for the websites you want information from?
- What mechanisms are in place to verify the harvested data is correct?
- How is the performance of the data spiders monitored to verify they haven’t failed?
- How is the data backed up? Is redundancy built into the process so that information is not lost?
- Is internet access high-speed, and how frequently is it monitored?

5. Speed

For those suppliers that are able to deliver data to you fast, make sure you understand why they are able to deliver at such a rapid speed. Are there special systems they have in place that enable them to do so? Or perhaps, is there any level of quality that is sacrificed as a result of getting you information fast.

Often when contracting with a data extraction partner, they’ll deliver your information on a set schedule that you both agree upon.

But, there may be times when you need information outside of your normal schedule, and you may even need it on a brief timeline.

Knowing in advance how quickly your partner is able to turn around a request will help you better prepare project lead times.

6. Scalability

The needs of your business change over time. And, as you work to grow, it is quite possible the data needs of your company will expand as well.

So, it’s helpful to know your data scraping partner is able to grow with you. It would be great to know that as the volume, and perhaps the speed of the information you need to run your business increases, the company providing it is able to keep pace.

Don’t get stuck with bad data
It could spell disaster for your business. So, make sure you do your due diligence to fully vet the companies you’re considering sourcing your data from.
Make a list of requirements in advance and rank them, if necessary, in order of importance to you.
That way, as you begin to evaluate proposals and capabilities, you’ll be in a position to make an informed decision.
You need good data. Your customers need you to have good data, too.
Make sure you work with someone who can give it to you.

Source url :-http://www.data-scraping.com.au/techniques-for-high-quality-web-crawling-and-data-extraction

Saturday, 17 June 2017

Web Scraping Techniques

Web Scraping Techniques

There can be various ways of accessing the web data. Some of the common techniques are using API, using the code to parse the web pages and browsing. The use of API is relevant if the site from where the data needs to be extracted supports such a system from before. Look at some of the common techniques of web scraping.

1. Text greping and regular expression matching

It is an easy technique and yet can be a powerful method of extracting information or data from the web. However, the web pages then need to be based on the grep utility of the UNIX operating system for matching regular expressions of the widely used programming languages. Python and Perl are some such programming languages.

2. HTTP programming

Often, it can be a big challenge to retrieve information from both static as well as dynamic web pages. However, it can be accomplished through sending your HTTP requests to a remote server through socket programming. By doing so, clients can be assured of getting accurate data, which can be a challenge otherwise.

3. HTML parsers

There are few data query languages in a semi-structured form that are capable of including HTQL and XQuery. These can be used to parse HTML web pages thus fetching and transforming the content of the web.

4. DOM Parsing

When you use web browsers like Mozilla or Internet Explorer, it is possible to retrieve contents of dynamic web pages generated by client scripting programs.

5. Reorganizing the semantic annotation

There are some web scraping services that can cater to web pages, which embrace metadata markup or semantic. These may be meant to track certain snippets. The web pages may embrace the annotations and can be also regarded as DOM parsing.
Setup or configuration needed to design a web crawler

The below-mentioned steps refer to the minimum configuration, which is required for designing a web scraping solution.

HTTP Fetcher– The fetcher extracts the web pages from the site servers targeted.

Dedup– Its job is to prevent extracting duplicate content from the web by making sure that the same text is not retrieved multiple times.

Extractor– This is a URL retrieval solution to fetch information from multiple external links.

URL Queue Manager– This queue manager puts the URLs in a queue and assigns a priority to the URLS that needs to be extracted and parsed.

Database– It is the place or the destination where data after being extracted by a web scraping tool is stored to process or analyze further.

Advantages of Data as a Service Providers

Outsourcing the data extraction process to a Data Services provider is the best option for businesses as it helps them focus on their core business functions. By relying on a data as a service provider, you are freed from the technically complicated tasks such as crawler setup, maintenance and quality check of the data. Since DaaS providers have expertise in extracting data and a pre-built infrastructure and team to take complete ownership of the process, the cost that you would incur will be significantly less than that of an in-house crawling setup.

Key advantages:

- Completely customisable for your requirement
- Takes complete ownership of the process
- Quality checks to ensure high quality data
- Can handle dynamic and complicated websites
- More time to focus on your core business

Source:https://www.promptcloud.com/blog/commercial-web-data-extraction-services-enterprise-growth

Tuesday, 13 June 2017

Benefits with Web Data Scraping Services

Web scraping in simple words is that you can extract data from any website and it is quite similar to web harvesting.

Online business has become so popular due to the increase in number of internet users. One of the main benefits of online business is that it is cheap and it is easily accessible. This has become very tough and a competitive field. Hence it is important that each should exhibit high performance in order to survive here. Today most of the online business depends on web data scraping for better performance.

The benefits with web data scraping services are:

•    An unstructured data can be transformed into suitable form and it can be stored as spreadsheet or as a database
•    It provides data which are informational
•    Some of the websites provide free access and hence you can save money
•    It helps to save time and energy. If it is done by manpower, it will take more time to do because they need to go through the websites and that can be time consuming.
•    The results provided are accurate. It will provide the exact result required instead of providing the related data.

With web scraping benefits you can scrape any kind of data without much trouble and can be delivered in whichever format you like MYSQL, EXCEL, CSV, XML etc. All you need to do is suggest the website from where you require the data.

So whether your business is big or small you can rely on these web scraping services for getting different types of data scraping. With web scraping you can even know the upcoming market and trends. You can even assume the strategies and plans of your competitor. This helps to take important decision at an appropriate time. This is an important step in any business whether it is big or small. Some of the companies even offer free trial service offer. You don’t need to make the payment in advance. When the work is done and if you are completely satisfied only then you need to do the payment.

Most of the companies use advanced data scraping tools and provides quality services. So you can be assured that the money you are paying is worthwhile. The information that you give to them will be kept strictly confidential. You can absolutely trust these companies for your business requirements.

To discuss web data scraping requirement, email at info@www.web-scraping-services.com.

Source Url :-http://3idatascraping.weebly.com/blog/benefits-with-web-data-scraping-services

Tuesday, 6 June 2017

4 Tools That Makes Web Data Extraction Easy

There is a huge amount of data available on the World Wide Web. Organizations and individuals find this information useful and often have to make use of it for various purposes. Traditionally, web data is retrieved by browsing and keyword searching. These methods are purely intuitive, the searches can return vast amount of unnecessary data, and it can take quite a bit of time before the searchers find what they are looking for. This data is sometimes hard to manipulate and work on as it is done in traditional databases.

But web pages written in mark-up languages like HTML and XHTML contain a wealth of knowledge. They also provide the structures that make data manipulation and analysis so easy. To extract this data some easily usable applications have been built. Though people who know nothing about coding can use some of these applications, it is always advisable to take the help of data extraction experts for help with such work, to obtain best results.

4  Tools to Improve your Web Data Extraction Efforts:

Uipath:

One of the popular web scraping applications is offered by the software automation and application integration company, Uipath. They offer free trials and also live demos for new users and potential customers. They offer website scraping from HTML, XML, AJAX, Java applets, Flash, Silverlight and PDF. Their application has powerful data transformation features and enables deduplication with SQL and LINQ queries.
Once the data has been extracted, it can be exported to various outputs like Microsoft Excel, CSV, .NET DataTable and so on. Automations can be done with web login, navigation, and even filling of forms.
This application is good for non-coders and can even be used to manipulate the interface of another application so that data transfer can take place between the two of them.
The price tag might be a tad high for individual users, but is worth it if you want a fast, accurate and simple application.

Import.io:

 Import.io offers to “instantly turn web pages into data”. They advertise their service saying that the customer does not need plugin, training or setup. Users can create custom APIs and crawl entire websites by using their desktop application. The best part is that no coding knowledge is required. Users can scrap data from an unlimited number of web pages. For the service, each page is a source that holds great potential to source application programming interface.
The extracted data is stored on Import.io’s cloud servers. It can then be downloaded in different formats that include CSV, Google sheets, Microsoft Excel and many more. The generated API enables users to integrate live web data with their own applications, third party analytics and visualization software without much difficulty. Though users do not need much technical skills to operate this service, the extraction reports arrives a good 24 hours after the request has been submitted.

Kimono:

The task of building an API to power applications, models and visualizations using live data and without the benefit of any code is done in seconds by Kimono. The service has a smart extractor. It recognizes patterns in web content. This enables the user to get the data that he or she wants, quickly and visually. The extracted APIs are hosted on a cloud. They are then run as per the schedule that is convenient for the user. While there is no problem with either the speed or the accuracy of Kimono, there is a lack of availability of page navigation, and the system requires some training before it begins to function at full capability.

Screen Scraper:

Like the other above-mentioned services, Screen Scraper works well with HTML and Javascript, extracts data precisely and provides the data in Excel and CSV fomat. However, it requires the user to have some coding skills. Only then can it be used to its optimum functionality. Even though the user will have to shell out a bit of money to use Screen Scraper, the service can handle almost any data extraction task with ease.

Source Url:-https://www.invensis.net/blog/data-processing/4-tools-makes-web-data-extraction-easy/

Thursday, 1 June 2017

Primary Information of Online Web Research- Web Mining & Data Extraction Services

Primary Information of Online Web Research- Web Mining & Data Extraction Services

World Wide Web and search engine development and data at our disposal and the ever-growing pile of information provided abundant. Now this information for research and analysis has become a popular and important.

Today, Web search services are increasingly complex. Business Intelligence and web dialogue to give the desired result that the various factors involved.

Researchers from web data web search (keyword of the application) or using the navigation engine specific Web resources can get. However, these methods are not effective. Keyword search returns a large portion of irrelevant data. Since each web page includes many outgoing links to navigate because it is difficult to extract the data too.

Web mining, Web content extraction, mining and Web usage mining Web structure is classified. Mineral content search and retrieval of information on the Web focuses on. Mine use of the extract and analyze user behavior. Structure mining contracts with the structure of hyperlinks.

Web mining services can be divided into three sub-tasks:

Information (RI) Recovery: The purpose of this sub-task to automatically find all relevant information and filter out irrelevant. The so Google, Yahoo, MSN, and other resources to find information such uses various search engines.

Generalization: The purpose of this subtask interested users to explore clustering and association rules, is that the use of data mining methods. Since dynamic Web data are incorrect, it is difficult for the traditional techniques of data mining are applied directly to the raw data.

Data (DV) Verification: The first working with data provided by attempts to discover knowledge. The researchers tested different models, they can imitate and eventually Web information valid for stability.

Software tools for data retrieval for structured data that is used in the Internet. There are so many Internet search engines to help you find a website for a particular issue would have been. Various sites in the data appears in different styles. The expert scraped help you compare the different sites and structures to store data up to date.

And the web crawler software tool is used to index web pages in the Internet, the Internet will move data from your hard drive. With this work, you can browse the Internet much faster to connect. And use the device off-peak hours is important if you try to download data from the Internet. It will take considerable time to download. However, the device with faster Internet rate. There you can download all data from the businessman is another tool called email extractor. The balance sheet, you can easily target the e-mail clients. Every time your product can deliver targeted advertisements to customers. The customer database to find the best equipment.

Web data extraction tool for comparing data from different sites and have to get data from HTML pages. Every day, many sites are hosted on the Internet. It is possible the same day do not look at all the sites.

However, there are more scratch rights are available on the Internet. And some Web sites provide reliable information on these tools. By paying a nominal amount to download these tools.

Source:http://www.sooperarticles.com/business-articles/outsourcing-articles/primary-information-online-web-research-web-mining-38-data-extraction-services-497487.html#ixzz4iGc3oemP

Friday, 19 May 2017

Web scraping provides reliable and up-to-date web data

Web scraping provides reliable and up-to-date web data

There is an inconceivably vast amount of content on the web which was built for human consumption. However, its unstructured nature presents an obstacle for software. So the general idea behind web scraping is to turn this unstructured web content into a structured format for easy analysis.

Automated data extraction smooths the tedious manual aspect of research and allows you to focus on finding actionable insights and implementing them. And this is especially critical when it comes to online reputation management. Respondents to The Social Habit study showed that when customers contact companies through social media for customer support issues, 32% expect a response within 30 minutes and 42% expect a response within 60 minutes. Using web scraping, you could easily have constantly updating data feeds that alert you to comments, help queries, and complaints about your brand on any website, allowing you to take instant action.

You also need to be sure that nothing falls through the cracks. You can easily monitor thousands, if not millions of websites for changes and updates that will impact your company.

Source:https://blog.scrapinghub.com/2016/12/15/how-to-increase-sales-with-online-reputation-management/

Saturday, 6 May 2017

Effective tips to extract data from website!

Effective tips to extract data from website!

Every day, a number of websites are being launched as a result of the development of internet technology. These websites are offering comprehensive information on different sectors or topics, these days. Apart from it, these websites are helping people in different manners too. In present scenario, there are a number of people using internet to fulfill their different purposes. The best thing about these websites is that these help people to get the exact information they are looking out for their specific purpose or requirement. In the past, people usually had to visit a number of websites when it comes to downloading information from internet. People had to do lots of manual work. If you are willing to extract data from website and that too without putting much efforts as well as spending precious time on it then it would be really good for you to go with data scrapping tools to fulfill your purpose in a perfect manner.

Even though, the data on the websites is available on the same format but it is presented in different styles and formations. Gathering data from websites not only requires so much manual work and one has to spend lots of time in it. To get rid of all these problems, one should consider the importance of using data scrapping tools. Getting data scrapping tools is not a matter of concern as these are easily available over the web, these days. The best thing about these tools is that these are also available with no cost. There are some companies offering these tools for trial period. In case, you are interested to purchase a full version of these tools then it will require some money to get it. At present, there are a sheer number of people non-familiars with the web data scraping tools.

Generally, people think that mining means just taking out wealth from the earth. However today, with the fast increasing internet technology terms, the new extracted source is data. Currently, there are a number of data extracting software available over the web. These are the software that can help people effectively in terms of extracting data from different websites. Majority of companies are now dealing with numerous data managing and converting data into useful form which is really a great help for people, these days. So, what are you waiting for? Extract data from website effectively with the support of web data scrapping tool!

Source:http://www.amazines.com/article_detail.cfm/6085814?articleid=6085814

Saturday, 22 April 2017

How Web Scraping Services Help Businesses to Do Better?

How Web Scraping Services Help Businesses to Do Better?

Web scraping services help in growing business as well as reaching business to the new success and heights. Data scraping services is the procedure to extract data from the websites like eBay for different business requirements. This gives high quality and accurate data which serves all your business requirements, track your opponents and convert you into decision maker. In addition, eBay web scraping services offer you data in the customized format and extremely cost effective too. It gives you easy way in of website data in the organized and resourceful manner that you can utilize the data for taking knowledgeable decision which is very important for the business.

Also, it creates new opportunities for monetizing online data as well as really suitable for the people that want to begin with lesser investment yet dreaming about enormous success of their business. Other advantages of eBay web scraping services include Lead Generation, Price Comparison, Competition Tracking, Consumer Behavior Tracking, and Data for online stores.

Data Extraction can be defined as the process of retrieving data from an unstructured source in order to process it further or store it. It is very useful for large organizations who deal with large amount of data on a daily basis that need to be processed into meaningful information and stored for later use. The data extraction is a systematic way to extract and structure data from scattered and semi-structured electronic documents, as found on the web and in various data warehouses.

In today's highly competitive business world, vital business information such as customer statistics, competitor's operational figures and inter-company sales figures play an important role in making strategic decisions. By signing on this service provider, you will be get access to critivcal data from various sources like websites, databases, images and documents.

It can help you take strategic business decisions that can shape your business' goals. Whether you need customer information, nuggets into your competitor's operations and figure out your organization's performance, it is highly critical to have data at your fingertips as and when you want it. Your company may be crippled with tons of data and it may prove a headache to control and convert the data into useful information. Data extraction services enable you get data quickly and in the right format.

Source:http://ezinearticles.com/?Data-Extraction-Services-For-Better-Outputs-in-Your-Business&id=2760257

Thursday, 13 April 2017

Three Common Methods For Web Data Extraction

Three Common Methods For Web Data Extraction

Probably the most common technique used traditionally to extract data from web pages this is to cook up some regular expressions that match the pieces you want (e.g., URL's and link titles). Our screen-scraper software actually started out as an application written in Perl for this very reason. In addition to regular expressions, you might also use some code written in something like Java or Active Server Pages to parse out larger chunks of text. Using raw regular expressions to pull out the data can be a little intimidating to the uninitiated, and can get a bit messy when a script contains a lot of them. At the same time, if you're already familiar with regular expressions, and your scraping project is relatively small, they can be a great solution.

Other techniques for getting the data out can get very sophisticated as algorithms that make use of artificial intelligence and such are applied to the page. Some programs will actually analyze the semantic content of an HTML page, then intelligently pull out the pieces that are of interest. Still other approaches deal with developing "ontologies", or hierarchical vocabularies intended to represent the content domain.

There are a number of companies (including our own) that offer commercial applications specifically intended to do screen-scraping. The applications vary quite a bit, but for medium to large-sized projects they're often a good solution. Each one will have its own learning curve, so you should plan on taking time to learn the ins and outs of a new application. Especially if you plan on doing a fair amount of screen-scraping it's probably a good idea to at least shop around for a screen-scraping application, as it will likely save you time and money in the long run.

So what's the best approach to data extraction? It really depends on what your needs are, and what resources you have at your disposal. Here are some of the pros and cons of the various approaches, as well as suggestions on when you might use each one:

Raw regular expressions and code

Advantages:

- If you're already familiar with regular expressions and at least one programming language, this can be a quick solution.
- Regular expressions allow for a fair amount of "fuzziness" in the matching such that minor changes to the content won't break them.
- You likely don't need to learn any new languages or tools (again, assuming you're already familiar with regular expressions and a programming language).
- Regular expressions are supported in almost all modern programming languages. Heck, even VBScript has a regular expression engine. It's also nice because the various regular expression implementations don't vary too significantly in their syntax.

Ontologies and artificial intelligence

Advantages:

- You create it once and it can more or less extract the data from any page within the content domain you're targeting.
- The data model is generally built in. For example, if you're extracting data about cars from web sites the extraction engine already knows what the make, model, and price are, so it can easily map them to existing data structures (e.g., insert the data into the correct locations in your database).
- There is relatively little long-term maintenance required. As web sites change you likely will need to do very little to your extraction engine in order to account for the changes.

Screen-scraping software

Advantages:

- Abstracts most of the complicated stuff away. You can do some pretty sophisticated things in most screen-scraping applications without knowing anything about regular expressions, HTTP, or cookies.
- Dramatically reduces the amount of time required to set up a site to be scraped. Once you learn a particular screen-scraping application the amount of time it requires to scrape sites vs. other methods is significantly lowered.
- Support from a commercial company. If you run into trouble while using a commercial screen-scraping application, chances are there are support forums and help lines where you can get assistance.

Source:http://ezinearticles.com/?Three-Common-Methods-For-Web-Data-Extraction&id=165416

Thursday, 6 April 2017

Introduction About Data Extraction Services

Introduction About Data Extraction Services

World Wide Web and search engine development and data at hand and ever-growing pile of information have led to abundant. Now this information for research and analysis has become a popular and important resource.

According to an investigation "now a days, companies are looking forward to the large number of digital documents, scanned documents to help them convert scanned paper documents.

Today, web services research is becoming more and more complex. The business intelligence and web dialogue to achieve the desired result if the various factors involved. You get all the company successfully for scanning ability and flexibility to your business needs to reach can not scan documents. Before you choose wisely you should hire them for scanning services.

Researchers Web search (keyword) engine or browsing data using specific Web resources can get. However, these methods are not effective. Keyword search provides a great deal of irrelevant data. Since each web page has many outbound links to browse because it is difficult to retrieve the data.

Web mining, web content mining, the use of web structure mining and Web mining is classified. Mining content search and retrieval of information from the web is focused on. Mining use of the extract and analyzes user behavior. Structure mining refers to the structure of hyperlinks.

Processing of data is much more financial institutions, universities, businesses, hospitals, oil and transportation companies and pharmaceutical organizations for the bulk of the publication is useful. There are different types of data processing services are available in the market. , Image processing, form processing, check processing, some of them are interviewed.

Web Services mining can be divided into three subtasks:

Information(IR) clearance: The purpose of this subtask to automatically find all relevant information and filter out irrelevant. Google, Yahoo, MSN, etc. and other resources needed to find information using various search engines like.

Generalization: The purpose of this subtask interested users to explore clustering and association rules, including using data mining methods. Since dynamic Web data are incorrect, it is difficult for traditional data mining techniques are applied to raw data.

Data (DV) Control: The former works with data that knowledge is trying to uncover. Researchers tested several models they can emulate and eventually Internet information is valid for stability.

Source:http://www.sooperarticles.com/business-articles/outsourcing-articles/introduction-about-data-extraction-services-500494.html

Wednesday, 5 April 2017

Why Businesses Need Data Scraping Service?

With the ever-increasing popularity of internet technology there is an abundance of knowledge processing information that can be used as gold if used in a structured format. We all know the importance of information. It has indeed become a valuable commodity and most sought after product for businesses. With widespread competition in businesses there is always a need to strive for better performances.

Taking this into consideration web data scraping service has become an inevitable component of businesses as it is highly useful in getting relevant information which is accurate. In the initial periods data scraping process included copying and pasting data information which was not relevant because it required intensive labor and was very costly. But now with the help of new data scraping tools like Mozenda, it is possible to extract data from websites easily. You can also take the help of data scrapers and data mining experts that scrape the data and automatically keep record of it.

How Professional Data Scraping Companies and Data Mining Experts Device a Solution?

Data Scraping Plan and Solutions

Why Data Scraping is Highly Essential for Businesses?

Data scraping is highly essential for every industry especially Hospitality, eCommerce, Research and Development, Healthcare, Financial and data scraping can be useful in marketing industry, real estate industry by scraping properties, agents, sites etc., travel and tourism industry etc. The reason for that is it is one of those industries where there is cut-throat competition and with the help of data scraping tools it is possible to extract useful information pertaining to preferences of customers, their preferred location, strategies of your competitors etc.

It is very important in today’s dynamic business world to understand the requirements of your customers and their preferences. This is because customers are the king of the market they determine the demand. Web data scraping process will help you in getting this vital information. It will help you in making crucial decisions which are highly critical for the success of business. With the help of data scraping tools you can automate the data scraping process which can result in increased productivity and accuracy.

Reasons Why Businesses Opt. For Website Data Scraping Solutions:

Website Scraping

Demand For New Data:

There is an overflowing demand for new data for businesses across the globe. This is due to increase in competition. The more information you have about your products, competitors, market etc. the better are your chances of expanding and persisting in competitive business environment. The manner in which data extraction process is followed is also very important; as mere data collection is useless. Today there is a need for a process through which you can utilize the information for the betterment of the business. This is where data scraping process and data scraping tools come into picture.

ImageCredit:3idatascraping.com
Capitalize On Hot Updates:

Today simple data collection is not enough to sustain in the business world. There is a need for getting up to date information. There are times when you will have the information pertaining to the trends in the market for your business but they would not be updated. During such times you will lose out on critical information. Hence; today in businesses it is a must to have recent information at your disposal.

The more recent update you have pertaining to the services of your business the better it is for your growth and sustenance. We are already seeing lot of innovation happening in the field of businesses hence; it is very important to be on your toes and collect relevant information with the help of data scrapers. With the help of data scrapping tools you can stay abreast with the latest developments in your business albeit; by spending extra money but it is necessary tradeoff in order to grow in your business or be left behind like a laggard.

Analyzing Future Demands:

Foreknowledge about the various major and minor issues of your industry will help you in assessing the future demand of your product / service. With the help of data scraping process; data scrapers can gather information pertaining to possibilities in business or venture you are involved in. You can also remain alert for changes, adjustments, and analysis of all aspects of your products and services.

Appraising Business:

It is very important to regularly analyze and evaluate your businesses. For that you need to evaluate whether the business goals have been met or not. It is important for businesses to know about your own performance. For example; for your businesses if the world market decides to lower the prices in order to grow their customer base you need to be prepared whether you can remain in the industry despite lowering the price. This can be done only with the help of data scraping process and data scraping tools.
Article Source :-http://www.habiledata.com/blog/why-businesses-need-data-scraping-service

Thursday, 30 March 2017

Global Scraping Devices Market 2017 Medical Research, Clinical Review

The Market and Research study, titled Worldwide Scraping Devices Market 2017, presents critical information and factual data about the Scraping Devices market globally, providing an overall statistical study of the Scraping Devices market on the basis of market drivers, Scraping Devices Market limitations, and its future prospects. The prevalent global Scraping Devices trends and opportunities are also taken into consideration in Scraping Devices industry study.

Global Scraping Devices Market 2017 report has Forecasted Compound Annual Growth Rate (CAGR) in % value for particular period for Scraping Devices market, that will help user to take decision based on futuristic chart. Report also includes key players in global Scraping Devices market. The Scraping Devices market size is estimated in terms of revenue (US$) and production volume in this report. Whereas the Scraping Devices market key segments and the geographical distribution across the globe is also deeply analyzed.

The research report gives an overview of global Scraping Devices industry on by analyzing various key segments of this Scraping Devices market based on the product types, application, and end-use industries, Scraping Devices market scenario. The regional distribution of the Scraping Devices market is across the globe are considered for this Scraping Devices industry analysis, the result of which is utilized to estimate the performance of the global Scraping Devices market over the period from 2015 to foretasted year.

All aspects of the Scraping Devices industry are quantitatively as well as qualitatively assessed to study the global as well as regional Scraping Devices market comparatively. The basic information such as the definition of the Scraping Devices market, prevalent Scraping Devices industry chain, and the government regulations pertaining to the Scraping Devices market are also discussed in the report.

The product range of the Scraping Devices market is examined on the basis of their production chain, Scraping Devices pricing of products, and the profit generated by them. Various regional markets for Scraping Devices are analyzed in this report and the production volume and efficacy of the Scraping Devices industry across the world is also discussed.

Source: http://www.medgadget.com/2017/03/global-scraping-devices-market-2017-medical-research-clinical-review.html

Wednesday, 29 March 2017

New technology Of Website Data Scraping

New technology Of Website Data Scraping

Proved to scrape data from websites using the software program is the process of extracting data from the Web. We offer the best web software to extract data. That kind of experience and knowledge in web data extraction is completed image, screen scrapping, email extractor services, data mining, web hoarding.

You can use the data scraping services?

Data as the information is available on the network, name, word, or what is available in web. be removed, restaurants our city California software and marketing company to use the data from these data can market their product as restaurants. Vast network construction and large building group for your product and company.

Web Data Extraction

Websites tagged text-based languages (HTML and XHTML) are created using, and often contain a lot of useful data as text. However, the majority of web pages and automate human end users are not designed for ease of use. Because of this, scrape toolkits that web content is created. A web scraper to have an API to extract data from a Web site. We have a variety of APIs that you need to scrape data helps help. We offer quality and affordable web applications for data mining

Data collection

In general; the information of the data transfer between the programs, people automatically by computer processing is performed by appropriate structures. Such formats and protocols are strictly structured change documented, analyzed easily, and to maintain a minimum ambiguity. Often, these transmissions are not readable.

Email Extractor

A tool that automatically any reliable source called an email extractor to extract email ids help. It is fundamentally different websites, HTML files, text files or any other format without ID duplicate email contacts collection services.

Screen Scrapping

Data mining is the process of extracting patterns from data services. Data mining to transform data into information is becoming an increasingly important tool. MS Excel, CSV, HTML and many other formats, including any format according to your needs.

Spider Web

A spider is a computer program that a methodical, automated or in an orderly way to surf the World Wide Web. Many sites, in particular search engines, providing up-to-date data, use speeding as a means. There are literally thousands of free proxy servers located throughout the world that are very easy to use.
Web Grabber

Web Grabber is just another name for data scraping or data extraction. Different techniques and processes designed to collect and analyze data, and has developed over time. Web Scraping for business processes that have beaten the market recently is one. It is a process from various sources such as websites and databases with large amounts of data provides.
Have you ever heard "data scraping?" Scraping data scraping technology to new technologies and a successful businessman made his fortune by taking advantage of the data is not.

Source: http://www.selfgrowth.com/articles/new-technology-of-website-data-scraping

Data Mining and Financial Data Analysis

Most marketers understand the value of collecting financial data, but also realize the challenges of leveraging this knowledge to create intelligent,
 proactive pathways back to the customer. Data mining - technologies and techniques for recognizing and tracking patterns within data - helps businesses sift through layers of seemingly unrelated data for meaningful relationships, where they can anticipate, rather than simply react to, customer needs as well as financial need. In this accessible introduction, we provides a business and technological overview of data mining and outlines how, along with sound business processes and complementary technologies, data mining can reinforce and redefine for financial analysis.

Objective:

1. The main objective of mining techniques is to discuss how customized data mining tools should be developed for financial data analysis.

2. Usage pattern, in terms of the purpose can be categories as per the need for financial analysis.

3. Develop a tool for financial analysis through data mining techniques.

Data mining:

Data mining is the procedure for extracting or mining knowledge for the large quantity of data or we can say data mining is "knowledge mining for data" or also we can say Knowledge Discovery in Database (KDD). Means data mining is : data collection , database creation, data management, data analysis and understanding.

There are some steps in the process of knowledge discovery in database, such as

1. Data cleaning. (To remove nose and inconsistent data)

2. Data integration. (Where multiple data source may be combined.)

3. Data selection. (Where data relevant to the analysis task are retrieved from the database.)

4. Data transformation. (Where data are transformed or consolidated into forms appropriate for mining by performing summary or aggregation operations, for instance)

5. Data mining. (An essential process where intelligent methods are applied in order to extract data patterns.)

6. Pattern evaluation. (To identify the truly interesting patterns representing knowledge based on some interesting measures.)

7. Knowledge presentation.(Where visualization and knowledge representation techniques are used to present the mined knowledge to the user.)

Data Warehouse:

A data warehouse is a repository of information collected from multiple sources, stored under a unified schema and which usually resides at a single site.

Text:

Most of the banks and financial institutions offer a wide verity of banking services such as checking, savings, business and individual customer transactions, credit and investment services like mutual funds etc. Some also offer insurance services and stock investment services.

There are different types of analysis available, but in this case we want to give one analysis known as "Evolution Analysis".

Data evolution analysis is used for the object whose behavior changes over time. Although this may include characterization, discrimination, association, classification, or clustering of time related data, means we can say this evolution analysis is done through the time series data analysis, sequence or periodicity pattern matching and similarity based data analysis.

Data collect from banking and financial sectors are often relatively complete, reliable and high quality, which gives the facility for analysis and data mining. Here we discuss few cases such as,

Eg, 1. Suppose we have stock market data of the last few years available. And we would like to invest in shares of best companies. A data mining study of stock exchange data may identify stock evolution regularities for overall stocks and for the stocks of particular companies. Such regularities may help predict future trends in stock market prices, contributing our decision making regarding stock investments.

Eg, 2. One may like to view the debt and revenue change by month, by region and by other factors along with minimum, maximum, total, average, and other statistical information. Data ware houses, give the facility for comparative analysis and outlier analysis all are play important roles in financial data analysis and mining.

Eg, 3. Loan payment prediction and customer credit analysis are critical to the business of the bank. There are many factors can strongly influence loan payment performance and customer credit rating. Data mining may help identify important factors and eliminate irrelevant one.

Factors related to the risk of loan payments like term of the loan, debt ratio, payment to income ratio, credit history and many more. The banks than decide whose profile shows relatively low risks according to the critical factor analysis.

We can perform the task faster and create a more sophisticated presentation with financial analysis software. These products condense complex data analyses into easy-to-understand graphic presentations. And there's a bonus: Such software can vault our practice to a more advanced business consulting level and help we attract new clients.

To help us find a program that best fits our needs-and our budget-we examined some of the leading packages that represent, by vendors' estimates, more than 90% of the market. Although all the packages are marketed as financial analysis software, they don't all perform every function needed for full-spectrum analyses. It should allow us to provide a unique service to clients.

The Products:

ACCPAC CFO (Comprehensive Financial Optimizer) is designed for small and medium-size enterprises and can help make business-planning decisions by modeling the impact of various options. This is accomplished by demonstrating the what-if outcomes of small changes. A roll forward feature prepares budgets or forecast reports in minutes. The program also generates a financial scorecard of key financial information and indicators.

Customized Financial Analysis by BizBench provides financial benchmarking to determine how a company compares to others in its industry by using the Risk Management Association (RMA) database. It also highlights key ratios that need improvement and year-to-year trend analysis. A unique function, Back Calculation, calculates the profit targets or the appropriate asset base to support existing sales and profitability. Its DuPont Model Analysis demonstrates how each ratio affects return on equity.

Financial Analysis CS reviews and compares a client's financial position with business peers or industry standards. It also can compare multiple locations of a single business to determine which are most profitable. Users who subscribe to the RMA option can integrate with Financial Analysis CS, which then lets them provide aggregated financial indicators of peers or industry standards, showing clients how their businesses compare.

iLumen regularly collects a client's financial information to provide ongoing analysis. It also provides benchmarking information, comparing the client's financial performance with industry peers. The system is Web-based and can monitor a client's performance on a monthly, quarterly and annual basis. The network can upload a trial balance file directly from any accounting software program and provide charts, graphs and ratios that demonstrate a company's performance for the period. Analysis tools are viewed through customized dashboards.

PlanGuru by New Horizon Technologies can generate client-ready integrated balance sheets, income statements and cash-flow statements. The program includes tools for analyzing data, making projections, forecasting and budgeting. It also supports multiple resulting scenarios. The system can calculate up to 21 financial ratios as well as the breakeven point. PlanGuru uses a spreadsheet-style interface and wizards that guide users through data entry. It can import from Excel, QuickBooks, Peachtree and plain text files. It comes in professional and consultant editions. An add-on, called the Business Analyzer, calculates benchmarks.

ProfitCents by Sageworks is Web-based, so it requires no software or updates. It integrates with QuickBooks, CCH, Caseware, Creative Solutions and Best Software applications. It also provides a wide variety of businesses analyses for nonprofits and sole proprietorships. The company offers free consulting, training and customer support. It's also available in Spanish.

Source:http://ezinearticles.com/?Data-Mining-and-Financial-Data-Analysis&id=2752017

Tuesday, 21 March 2017

Web Data Extraction Services and Data Collection Form Website Pages

Web Data Extraction Services and Data Collection Form Website Pages

For any business market research and surveys plays crucial role in strategic decision making. Web scrapping and data extraction techniques help you find relevant information and data for your business or personal use. Most of the time professionals manually copy-paste data from web pages or download a whole website resulting in waste of time and efforts.

Instead, consider using web scraping techniques that crawls through thousands of website pages to extract specific information and simultaneously save this information into a database, CSV file, XML file or any other custom format for future reference.

Examples of web data extraction process include:
• Spider a government portal, extracting names of citizens for a survey
• Crawl competitor websites for product pricing and feature data
• Use web scraping to download images from a stock photography site for website design

Automated Data Collection
Web scraping also allows you to monitor website data changes over stipulated period and collect these data on a scheduled basis automatically. Automated data collection helps you discover market trends, determine user behavior and predict how data will change in near future.

Examples of automated data collection include:
• Monitor price information for select stocks on hourly basis
• Collect mortgage rates from various financial firms on daily basis
• Check whether reports on constant basis as and when required

Using web data extraction services you can mine any data related to your business objective, download them into a spreadsheet so that they can be analyzed and compared with ease.

In this way you get accurate and quicker results saving hundreds of man-hours and money!

With web data extraction services you can easily fetch product pricing information, sales leads, mailing database, competitors data, profile data and many more on a consistent basis.

Source:http://ezinearticles.com/?Web-Data-Extraction-Services-and-Data-Collection-Form-Website-Pages&id=4860417

Saturday, 11 March 2017

Understanding URL scraping

Understanding URL scraping

URL scraping is the process where you automatically extract and filter URLs of WebPages that have specific features. The features that you are looking for vary depending on your goal. For example, if you are looking for a site where you can place your comment and get back link juice, you should go for WebPages that allow dofollow comments.

Techniques for URL scraping

There are many techniques that you can use to get the URL that you are looking for. Some of these techniques include:

Copy pasting: this is where you visit a given site and check whether it has the features that you are looking for. For example, if you are interested in dofollow links, you should visit a number of sites and find out if they have your target links. You should then identify the ones that have the features that you are looking for and compile a list.

Text grepping: this is a technique that allows you to search plain text on websites that match a regular expression. Although, the technique was designed for Unix, you can also use it on other operating systems.

HTTP programming: here you retrieve the WebPages that have the features that you are looking for. You should then note the URL of the pages. To retrieve the pages you have to post HTTP requests using a remote server that uses socket programming.

HTML Parser: a HTML parser allows you to mine data by detecting a common template, script or code on a specific website or Webpage. To be able to detect the script or code you have to use one of the many programming languages: HTQL, Java, PHP, XQuery and Python. Once the data is extracted, it's translated and packaged in a way that you are able to easily understand it.

DOM parsing: This is a technique where you retrieve dynamic content that has been generated by client side scripts that execute in a web browser such as Google Chrome, Mozilla Firefox or any other browsers.

URL scraping software: this is the easiest way of scraping URLs as all you need is high quality software that will do all the work for you. You should identify the features that you are interested in and then give command to the software. The software will go through all the sites on the internet and extract the URLs of the pages that have your target features.

Source: http://www.amazines.com/article_detail.cfm/6180373?articleid=6180373

Thursday, 16 February 2017

Data Mining's Importance in Today's Corporate Industry

Data Mining's Importance in Today's Corporate Industry

A large amount of information is collected normally in business, government departments and research & development organizations. They are typically stored in large information warehouses or bases. For data mining tasks suitable data has to be extracted, linked, cleaned and integrated with external sources. In other words, it is the retrieval of useful information from large masses of information, which is also presented in an analyzed form for specific decision-making.

Data mining is the automated analysis of large information sets to find patterns and trends that might otherwise go undiscovered. It is largely used in several applications such as understanding consumer research marketing, product analysis, demand and supply analysis, telecommunications and so on. Data Mining is based on mathematical algorithm and analytical skills to drive the desired results from the huge database collection.

It can be technically defined as the automated mining of hidden information from large databases for predictive analysis. Web mining requires the use of mathematical algorithms and statistical techniques integrated with software tools.

Data mining includes a number of different technical approaches, such as:

-  Clustering
-  Data Summarization
-  Learning Classification Rules
-  Finding Dependency Networks
-  Analyzing Changes
-  Detecting Anomalies

The software enables users to analyze large databases to provide solutions to business decision problems. Data mining is a technology and not a business solution like statistics. Thus the data mining software provides an idea about the customers that would be intrigued by the new product.

It is available in various forms like text, web, audio & video data mining, pictorial data mining, relational databases, and social networks. Data mining is thus also known as Knowledge Discovery in Databases since it involves searching for implicit information in large databases. The main kinds of data mining software are: clustering and segmentation software, statistical analysis software, text analysis, mining and information retrieval software and visualization software.

Data Mining therefore has arrived on the scene at the very appropriate time, helping these enterprises to achieve a number of complex tasks that would have taken up ages but for the advent of this marvelous new technology.

Source:http://ezinearticles.com/?Data-Minings-Importance-in-Todays-Corporate-Industry&id=2057401

Tuesday, 7 February 2017

Data Mining Introduction

Data Mining Introduction

Introduction

We have been "manually" extracting data in relation to the patterns they form for many years but as the volume of data and the varied sources from which we obtain it grow a more automatic approach is required.

The cause and solution to this increase in data to be processed has been because the increasing power of computer technology has increased data collection and storage. Direct hands-on data analysis has increasingly been supplemented, or even replaced entirely, by indirect, automatic data processing. Data mining is the process uncovering hidden data patterns and has been used by businesses, scientists and governments for years to produce market research reports. A primary use for data mining is to analyse patterns of behaviour.

It can be easily be divided into stages

Pre-processing

Once the objective for the data that has been deemed to be useful and able to be interpreted is known, a target data set has to be assembled. Logically data mining can only discover data patterns that already exist in the collected data, therefore the target dataset must be able to contain these patterns but small enough to be able to succeed in its objective within an acceptable time frame.

The target set then has to be cleansed. This removes sources that have noise and missing data.

The clean data is then reduced into feature vectors,(a summarized version of the raw data source) at a rate of one vector per source. The feature vectors are then split into two sets, a "training set" and a "test set". The training set is used to "train" the data mining algorithm(s), while the test set is used to verify the accuracy of any patterns found.

Data mining

Data mining commonly involves four classes of task:

Classification - Arranges the data into predefined groups. For example email could be classified as legitimate or spam.
Clustering - Arranges data in groups defined by algorithms that attempt to group similar items together
Regression - Attempts to find a function which models the data with the least error.
Association rule learning - Searches for relationships between variables. Often used in supermarkets to work out what products are frequently bought together. This information can then be used for marketing purposes.

Validation of Results

The final stage is to verify that the patterns produced by the data mining algorithms occur in the wider data set as not all patterns found by the data mining algorithms are necessarily valid.

If the patterns do not meet the required standards, then the preprocessing and data mining stages have to be re-evaluated. When the patterns meet the required standards then these patterns can be turned into knowledge.

Source : http://ezinearticles.com/?Data-Mining-Introduction&id=2731583

Wednesday, 18 January 2017

Data Mining - Efficient in Detecting and Solving the Fraud Cases

Data Mining - Efficient in Detecting and Solving the Fraud Cases

Data mining can be considered to be the crucial process of dragging out accurate and probably useful details from the data. This application uses analytical as well as visualization technology in order to explore and represent content in a specific format, which is easily engulfed by a layman. It is widely used in a variety of profiling exercises, such as detection of fraud, scientific discovery, surveys and marketing research. Data management has applications in various monetary sectors, health sectors, bio-informatics, social network data research, business intelligence etc. This module is mainly used by corporate personals in order to understand the behavior of customers. With its help, they can analyze the purchasing pattern of clients and can thus expand their market strategy. Various financial institutions and banking sectors use this module in order to detect the credit card fraud cases, by recognizing the process involved in false transactions. Data management is correlated to expertise and talent plays a vital role in running such kind of function. This is the reason, why it is usually referred as craft rather than science.

The main role of data mining is to provide analytical mindset into the conduct of a particular company, determining the historical data. For this, unknown external events and fretful activities are also considered. On the imperious level, it is more complicated mainly for regulatory bodies for forecasting various activities in advance and taking necessary measures in preventing illegal events in future. Overall, data management can be defined as the process of extracting motifs from data. It is mainly used to unwrap motifs in data, but more often, it is carried out on samples of the content. And if the samples are not of good representation then the data mining procedure will be ineffective. It is unable to discover designs, if they are present in the larger part of data. However, verification and validation of information can be carried out with the help of such kind of module.

Source:http://ezinearticles.com/?Data-Mining---Efficient-in-Detecting-and-Solving-the-Fraud-Cases&id=4378613

Monday, 9 January 2017

Data Mining

Data Mining

Data mining is the retrieving of hidden information from data using algorithms. Data mining helps to extract useful information from great masses of data, which can be used for making practical interpretations for business decision-making. It is basically a technical and mathematical process that involves the use of software and specially designed programs. Data mining is thus also known as Knowledge Discovery in Databases (KDD) since it involves searching for implicit information in large databases. The main kinds of data mining software are: clustering and segmentation software, statistical analysis software, text analysis, mining and information retrieval software and visualization software.

Data mining is gaining a lot of importance because of its vast applicability. It is being used increasingly in business applications for understanding and then predicting valuable information, like customer buying behavior and buying trends, profiles of customers, industry analysis, etc. It is basically an extension of some statistical methods like regression. However, the use of some advanced technologies makes it a decision making tool as well. Some advanced data mining tools can perform database integration, automated model scoring, exporting models to other applications, business templates, incorporating financial information, computing target columns, and more.

Some of the main applications of data mining are in direct marketing, e-commerce, customer relationship management, healthcare, the oil and gas industry, scientific tests, genetics, telecommunications, financial services and utilities. The different kinds of data are: text mining, web mining, social networks data mining, relational databases, pictorial data mining, audio data mining and video data mining.

Some of the most popular data mining tools are: decision trees, information gain, probability, probability density functions, Gaussians, maximum likelihood estimation, Gaussian Baves classification, cross-validation, neural networks, instance-based learning /case-based/ memory-based/non-parametric, regression algorithms, Bayesian networks, Gaussian mixture models, K-Means and hierarchical clustering, Markov models, support vector machines, game tree search and alpha-beta search algorithms, game theory, artificial intelligence, A-star heuristic search, HillClimbing, simulated annealing and genetic algorithms.

Some popular data mining software includes: Connexor Machines, Copernic Summarizer, Corpora, DocMINER, DolphinSearch, dtSearch, DS Dataset, Enkata, Entrieva, Files Search Assistant, FreeText Software Technologies, Intellexer, Insightful InFact, Inxight, ISYS:desktop, Klarity (part of Intology tools), Leximancer, Lextek Onix Toolkit, Lextek Profiling Engine, Megaputer Text Analyst, Monarch, Recommind MindServer, SAS Text Miner, SPSS LexiQuest, SPSS Text Mining for Clementine, Temis-Group, TeSSI®, Textalyser, TextPipe Pro, TextQuest, Readware, Quenza, VantagePoint, VisualText(TM), by TextAI, Wordstat. There is also free software and shareware such as INTEXT, S-EM (Spy-EM), and Vivisimo/Clusty.

Source : http://ezinearticles.com/?Data-Mining&id=196652